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Abstract

six additional item responses can be expected in typical
educational and psychological applications. Empirical Bayes
computational procedures are presented, and illustrated with data

from the Profile of American Youth survey.

Key words: EM-algorithm, empirical Bayes, marginal maximum

l1ikelihood
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Exploiting Auxiliary Information about Examinees in the

Estimation of Item Parameters
A pervasive problem in item response Eﬁéory (iﬁT) is the

difficuity of simultaneously éétiﬁétiﬁg large nupbers of parameters
from iimited data:. Even large samples of examinees may not
eliminate the problem when each examinee responds to only a few
iiem§; as in educational assessment and adaptive Eééﬁiﬁg; Certain
improvements are obtained by using hierarchial models along the
iines of Liﬁ&iéy and Smith (i§725; Efeafing examinee paramefers as a

sample from a common population enhances the stability and precision

of item parameter as well as examinee parameter estimates: This
Qﬁﬁibiéﬁ has been applied to IRT Ei a number of researchers
recently, including Bock and Adtkin (iééii, Leonard and Novick
(1985), Rigdon and Tsutakawa (1982), and Swaminathan and €ifford
(1982).

For the most bari, the aforementional writers consider all
examinees to be members of a Siﬁgié; ﬁﬁéiffereﬁtiétéd; babuiétion.
This framework instzntiates such beliefs as; "if the parameters
of most examinees seem to lie between -3 and +3, then the
parameter of an examinee who answered both of two hard math items
correctly is probably somewhere between +1:5 to +3.5—even though
his/her maximum likelihood estimate is +o.* Additional stability

and precision may yet be achieved if auxiliary information is

(va)
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available about examinees; such as aducational background or status
on demographic variables. A statement like “theé parametér of an

examinee who answered both of two hard math items correctly and
studied calculus in college is probably between +2.7 and +3.7;"
might result.

This paper addresses the utilization of auxiliaty information
about examinees in estimating item parameters. The following

section reviews item parameter estimation wher examinee parameters

are known; then when examinee parameters are unknown and nothing

is assumed about them. Attention then turns to the additional
éésumpiions of first; an undifferentiated bobﬁiaiibn, and second,

a population differentiated with respect to auiiiiary variables.
Following this are sections that discuss anticipated gains in
piecisibn; outline combutatibnai brOCe&ures, and illustrate the
approach with responses to four items from the Arithmetic Rnowledge

The Role of Auxiliary Information
The relevance of auxiliary examinee variables to item
parameter estimation 18 not immediately obvious, since they play
no role in the basic model for item responses: letting x; = (%, ), s
ceesXys) réﬁréséni the responses of examinee i to n test items and
y, represent values of auiiiiafy variables such as educational and

demographic status, the standard IRT assumption of loca
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independénée states thart

where ei is the examinee parameter B = (Bi""’B ) are possibly

vector—valued item parameters, and the form of p(xijlei’sj) is

speci"iéa ' priofi thr0ugh the item response model. It follows that
Yy would indeed be irrelevant to item parameter estimation if ei
were known. The likelihbod to be maximized with resﬁeét to B;
given the data matrix f = (xl,...,xN) of responses from N examinees

with proficiencies e = (61,...,6N) &nd auxiliary variables Y =

(yi....,yﬁ), would be simply

ilei.s) : (2)

tr
"
k=1

The maximum 1ikelihood estimate {MLE) B would satisfy the

likelihood equations

o
n

£ ae;(8.)/08 (3)
: B

where ii(&) iog p(xiiﬁ.és. and the covariance matrix of
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estimation ervor variances for 8 could be approximated by the

inverse of the observed information matrix 1:

by ey
(I 38 TN P
- - A=

~ 2~

. (4)

- |

But Equation ! gives response probabilities conditioned on 8,

and 6 1s not krown in practice. The problem that must actually be

Ly = 1 5 p(xylo.p) aFye) (5

where F;(6) 1s the distribution of the unknown proficiency of

examinee 1. This is en "incomplete data” problem, in the

terminology of Dempster, Laird, and Rubin (1977), corresponding
to the "complete data” problem of maximizing Equation 2 when
is known. Assuming the required integrals exist, the 1ikelihood
eQuations become
- ,.7..1:;,7, R
0 =% p (x9) 7/ [32,(8)/28] dF;(0)

i ~

where
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pi(fi) = f li(e)dFi(e) .

Louis (1982) shows that if Zack's (1971, Chapter 5) regularity
conditions are met and if F; is known for all i; the diagonal

elements of the incomplete-data observed information matrix,

namely

O P F{{ P qzigsir;: S -
I;( ai Pi (fi) f {( ag 38' ) . } dFi(e) N (6)

cannot exceed the diagonal elements I,. In oth.t words, the
precision with with elements of g would be estimatec if § were known
provides an upper limit to the preéision to be expeéted when 8 is

A similar phenomenon arises in the context of sample survey

analysis when a clustered sampling design is employed to estimate

a mean. If n units are sampled from each of N randomly-selected
clusters, then the squared standard error of the mean, ignoring

finite population corréections, is given as

10




SEM” = = [1 + (n - 1)p] ,

where o2 is the population variance and p is the intraclass

correlat .on coetficient indicating within-cluster homogeneity. 1f

the value of SEM2 obtained when the means of the sampled clusters
are known wthoit error.

The estimation of B in rhe c0ntext of IRT must also desl with

nnéertainty from two sources. First is the uéﬁal limitation of

having data éfaa only a fintte éééaié Sf examinees. All other

. Second is the limitation that ¢ remains unknown

1>

ﬁrééiéion for
even for sampled examinees. For a fixed sample of examinees,
réduciné uncertainty about e 1eads to greater precision for 3.

This can be achieved through (i) item TEEPOHSégs (11) assumptions

about the Fii and (111) auxiliary variables related to 6.

de Leeuw and Verhelst (1984) point out that finding maxima in
terms of B and of each individual ei in the manner suggested by
Birnbaum (1968) is equivalent to maximizing Equation 5 when each
i-*i concentrates its mass at the ’sinéié '(iiﬁiéﬁéi&ﬁ)’ ;3615{ éi; "’rﬁié

in rééﬁonéeé %y from examinee 1 to reduce uncértainty about 85+

HM

8
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Alternatively, one may consider the 8's to be identicailv
distributed; so *hat F, = F for all 1. An auxiliary variable y

is thereby implied for all examinees, an indicator slgnifying ¢hat
each 1s a member of the popilation whose distribution is specified

assumed population distribution combines with x, to produce
p(8, |X); which in this case equals p(6|x;). Under the latter
two approaches, responses from examinees other than examinee 1
also play a role in estimating F so that p(éi|§i5 + (6 i]g);
A third alternative, falling between unique, unconstrained

F,'s and identical F;'s, is to posit distributions that depend on

auxiliary variables: that is, F (8) = Fyi(é); Examinees with
tdentical y values are considered a random éémpié from a
popuiétion indexed by -hat pérticuiét value of y, and these
conditional distributions are allowed to vary with y+ A following
section giﬁéé details for two Epétiai cages, namely a linear model

and a (quasi-) nonparametric mixturé approximation.

S
oD

9
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How Much Can Be Gained?

Several factors contribute to the magnitude of the precision
gains that can be achieved through population assumptions and
aﬁiiiiati variables. One factor is the sensitivity of different
model parameters to missing information. Mislevy's (1984) analysis

of Bock and Lieberman's (1970) LSAT data showed that estimates of

the bobuiatibﬁ variance were more substantiaily improved by
increases in test leﬁgth than were estimates of the population

mean. This might lead one to expect increased information about
to have more effect on item sibpes than on item thresholds in the
context of item parameter estimation.

A second factor is the nature of the joint dlstribution of
auxiliary variables with 6: An éuiiiié?? variable a&ééé at

A third factor is the dependence of the estimated information
upon estimated parameter values. Although a slope parameter
_may be caﬁsistéﬁtiy estimated under both the undifferentiated and

un&ifferéﬁtiated population models, a higher estimate under the

latter may aggeat,iess precise. Tﬁié is because estimated standard
ertors for slopes are directly proportional to the values of the

slope estimates, even though true standard errors depend on true

13
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aid of auxiliary variables and obtaining a higher estimate can
thus have a lower true standard error but a higher estimated
standard errors

Since the same factors determiné information gain from both

fncreased test length and auxiliary variables, however, it is
reasonable to consider the contribution of auxiliary variables in
units of additional item responses. In the special case of

dichotomous items, the amount of information conveyed by item
responses alone is

rcan?
P(8)
3

1(8) = I 35T o
Pj(e)“ Pj

®7

Gl |

where ij(e§ = ﬁ(ij = 1]8) and Pi(é§ = an(éiiaé. For examinees
with finite maximum 1ikelihood estimates; Bayes theorem applied

with a diffuse prior leads to the approxima‘ion b(élgij N N(é;oi)

with df = 1"}, This follows by first rescaling the likelihood o
that it integrates to one, then using its mode and curvature at the
mode in a normal approximation.

Consider as an example the two-parameter logistic model,

under which Pi(e) p(x = 1ie,aj,si) = 1/{1 + éiﬁ[-i.7£i(é - s5>;;.

14
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The contribution of item 3 to information about 8 1s

2 89a P (e)[l > (8)], and the total information from n identical

3 J

items for which bj =) and a.j = ais simply 0:7225 nal. Table 1

gives values of i and oz in this simple case for se‘ected test
lengths and values of a. Note that where l.7a = 1.0 (i.e.,

a = ;5855 corresponding to an item trait correlation of :7071 in a
standard normal population), four additional items provide a unit
gain in precision. The results provide an indication of the amount
of information about ) that is employed in JML estimation of item
parameters. It is apparent that as test length increases,
tnformation (ises, precision) increases at a constant rate and the
posterior variance decreases at a decreasing rate.

The magnitude of gain in information about 6 obtained hy
assuming an undifferentiated population (i.e., F’ F) can be
ga&géa by extending the approximation empioyed for Table 1. If the
normalized likelihood function induced by x is again approximated
as N(e,o ) and if it is further assumed that examinee i has been

selected at random from a population in which 8 ~ N(u,az), then

p(8|x;) S N(B,I)

15
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where

and

Table 2 shows values of the reciprocal of I (1.e., "precision”)
from various test iéﬁgéﬁ§ with identical items with l:7a = 1 aﬁé a
standard normal prior for 8. Note that for each test length, a
unit gain in precision is achieved over the 1.7a = 1 column of
Table 1. These tabled values fall within the ranges encountered i

applied work, and suggest that the assumed distribution contributes

about as much information about 6 as four additional items. The
corresponding value for 1:7a = s5 is sixteen items, and that for
1.7a = 1.5 is about one item. Since the absolute contribution is
constant with respect to increasing test length, the relative
contribution deciines.

To gauge the additional impact of differentiating the

population through auxiliary variablés, vé may consider numerical

16



variance in a population with total variance 1.0, so that

F(8) < NGu,02) with o2 = 1 = 1. If the normalized likelihood

induced i:'y item responses 1s approximately N(é,&i), then

- - 5655 + ﬁ;a?é - N
o N s wf X ye =2 -=2=l3
P(e Ifi ’yi) ~ N [ 7_2 _2 ] (oe + g x) ] .

Using the same simplified item response model and 'a' value as

Tablé 2, Table 3 compares values of the inverse of the posterior

variance for 6 as determined by (1) item responses alonme, (11) with

knowledge of membership in an undifferentiated population with unit
variance, and (1ii) with the additional knowledge of auxiliary

variables that account for successively greater proportions of
total variance. Values between 10- and 40-percent, a range typical
of educational and bsycﬁbibgicai ﬁbrﬁi increase information
(posterior precision) about 6 by amounts roughly equivalent to one
to three additional item responses: For items with 1:7a = .5,
gaing in item units would be dbﬁbiéd; for items with l.7a = 1.5,

gains in item units would be halved.

Insert Tables 2-3 about here

17
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The Ignorability of p(y)

This section demonstrates that under reasonable assumfiions;
the population distribution of y can be ignored for the purposes of
estimating item parameters B and population parameter as
Suppose that the distribution of y in a population of examinees is

governed by the density function p(y|y), which depends on possibly

unknown parameters Yy but not upon item parameters B nor ou the

probability of observing the data matrix (X,Y) from a random
sample of N examinees is given by

P(X,Y[8 sa,¥)

=1 S plx, 18,7, 8,057 p(8 |y, 8,a,7) ply, |B.a,y) db
L - e s s

-

T S p(x;16,8) p(8ly;a) ply, |v) de
i ~ ~ ~

= (1S pCxilo.8) poly; @) do) x (1 ply;|y))

- P(X[1,8,0) BCY[Y) . (6)

m?f
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Liicéiiii’db’d iiiféi'eiiééé about é and B are therefore independent of

inferences about v, and the conditional MLE's of a and g given Y
are identical to MLE's obtained 5biﬁtiy with y.
Hbdéié éﬁé Methods

This section presents two IRT models that differentiate
examinees Sy means of auxiiiary variables, and Suééesié coﬁpuﬁiﬁé
abﬁfbiimatioﬁé based on Bock and Altkin's (1981) marginai maximum
likelihood (empirical Bayes) procedures.
Mixtures of Finite Distributions

Mislevy (1984) decribes a nonparametric approximation of a
continuous éeﬁsity function of a latent variable in terms of a
distribution with mass at a finite number of prespecified points.
The proficiency of each examinee, or 6, then, is assumed to take

replaced by an analogous "latent class” problem that is easier to

solve. A single population was addressed in that presentation,

and item parameters were assumed known. We now consider extensions
to the simulcaneous estimation of item parameters, and to miltiple
subpopulations indexed by an auxiliary variable y. This approach
provides consiéérabiy fiéxibiiiiy in the distributions fiiéj =
@ 1 lends itself well to discrete auxiliary variables with
relatively few values.
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It proves convenient to write such an auxiliary variable as
a vector of 0/1 indicators. Define y; = (F41»e0+3Y5%) by letting
%4 = 1 1f examinees i is associated with the k'th of K exhaustive
and mitually exclusive Subﬁbﬁuiaiioﬁé, and zero otherwise: The
probability of observing response pattern X from an examinee

selected at random from a specified subpopulation is given by

bCx, 7,80 =1 L 7 pCx, [6.8) ar o)) ¢ 7
p -i !1’9 E P xi ’8 k b}

where ii is the distribution in subpopuation k. This probability

can be approximated by a finite distribution as

o, lyo 8) = 1 L & plx, Jo_,8ou 3 2K )
p ~i !i’-' " p -i q’~ qk

k

LI

where 0550204 is a grid of points and ﬁéﬁ is tie weight or

density at point q in subpopulation k. The weights W play the
role of a in earlier notation. For the remainder of this

subsection, we limit our attention to distributions of the form
of the right-hand side of Equation 8: As demonstrated above, we

may carry out the estimation of B and W conditional on Y.
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Let (X,Y) be the data matrix observed from a sample of N

examinees selected either vandomly from the population as a whole
ot ag random subsamples stratified on y. The probability of X

given Y is bioportionai to

and its logarithm is
iy = log hﬁ

=% Ty log % plxglo.8) Wy -
A ik q z1%q’: qk

Relative maxima with respect to § and W can be obtained by means

of the EM algorithm, under the speclal case of missing indicators

for a multinomial distribution (Dempster et al., 1977, Section

5;35; The éiﬁéééééiéﬁ éééﬁ of éyéle t +1 éomputes exbeéted

values of the following quantities:



e

2.
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AR

The expected number of examinees with proficiency 0, from

L

sample of size N’k from subpopulation k, conditional on X,
ét, and Wt:

At4l
No

T
Y11Pk©@q%4)

"
o

where

~

“t, ; N o ooy 7: ;t“t : ;,,,7: . ,,t,{‘ti
P (@ 1%y) = pxglo 8 = 8T,/ Zop(xglo.8 = 804,

an application of Bayes theorem; gives the posterior

probability that the proficiency of examinee 1 is 6, given

provisional parameter estimates g° and W' .
The expected number of correct responses to item i from
examinees in subpopulation k with proficiency 0> glven a

random sample of size N_(again given 8% and W°):
~t+l

+ - i . AEZ -
Rigk = I YuckyyP@qlxg)
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The maximization SLep computes what would be MLE 8 of é and

and R were observed quantities rather than conditional

& zl)\

Wif }

-~

expectations. For W, we have simply

wg+1 , t+1/

qk N .

For é, we solre conditional expeetationé of 1ikelihood equations:

5 tH1% el e
R, N~ P, (@ ) 3P (0 ) ,
0 =L = i':i = P—'e?—' -—gﬁ-ﬂ— ’ (9)
T 9 Jq h ~
where it*l z Rt+1 and Nt+1 1s similarly defined. Under the 2-
o+ Jak q¥
parameter logistic model, for example, Equation 9 simﬁiifies as
follows.
8 0=z [REYD ’E*ir CRICHERS
3 q Ja* P19 b
o : ‘t$1 t¢1
b: - .
5 i [R g+ (0 )]a

In principie, the lirear indeterminacy in the 1=, 2-, and 3-

parameter logistic and normal IRT models presents no impediment to

23
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the EM algorithm, which readily converges to one of the infinitéij'
many solutions on S éiééé; Numerical stability and the quality of
the finite characterization of F are enhaneed however, B§
cnntrblling the acauﬁg of the solution at this ﬁéint; One
convenient way of doing so is to standardize the weighted average
distribution. We have referred to the points e as éﬁeéi%ied a
;riori; éiven tne 1inear indeterminacy, we may conceive of only
tnéir réiative spacing as ﬁreéﬁeéified. After each EM cycle, then,

we may rescale the points as follows:
=(©. -8)s
( g )

where

and

IR
0

Item parameteérs are adjuéted aecordingiya Under the 2- and 3-
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parameter mb&eis; %j is replaced by (gj - 6)/6 and éj 15 replaced
by say . Under l-parameter models, rescaling takes place only with
respect to 6.

Iteration from several starting values helps to verify whether
a given solution 1s indeed a global maximums The observed
ihfbrﬁatibﬁ matrix for the item parameter estimates can then be

éééébéimaied via Equation 6. Employing Louis's (1982)

simplifications for “missing multinomial indicators” ;éSbiémég we
obtain
agle) agi0) .

IX;Y(g) - i i Yig £ ( 3B AN ) pk(éqlfi) ’
q - - (10)

W
[
=
l
LI TR
L ]

where ;i(ééifi) is évaiuated aﬁ 8
A Linear Model

fﬁé unrestricted mixture solution described above becomes
unwieldly as the number of potential values of the auxiliary

variable increases. The more structured alternative of a linear

model for p(8|y) is suitable when y is vector-valued or is
continuous rather than discrete. Aseuming homoscedastic and normal

residuals, we would have

25
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6~ Ny'ai?)

where auxiliary variables are coded so that the K columns of Y =

. yK)i; which are basis vectors for the K elements of g,

o~
d !
—

sel®

are linearly independent. They may include values on measured

variables such as previous test scores and dummy regression
variables that encode selected contrasts among categorical

éﬁxiiiéti variables.

Maximum likelihood solutions for a and o2 in the special case
of structured means for the cells of a muifi-way design have been
given by Mislevy (1985) under the assﬁﬁptiaﬁ that item parameters

are known, and by Zwarts and Veldhuesen (1985) under the assumption
that p(x|6) is the Rasch model with unknown item parameters to be

estimated jointly. These solutions are readily extended to the
case of a general IRT model with unknown item parameters. This
section describes an approximation over a grid of prespecified

points so that computation is similar to the nonparametric solution

described above. Attention is focused for convenience upon the I-,

The linear indeterminacies of these models are again

conveniently resolved by restrictions on the population parameters.

First, we may without loss of generality fix o at unity to set the
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unit-gize of the scale. For i-parameter models; a slope parameter

common over items is then estimated. Second, we may set the

origin by centering the elements of each column of Y at zero. All

effects are thus cast as deviations around a grand mean of zero:
This restriction; in conjunction with the independence of the basis

vectors, completes the resolution of the scale.

The marginai likelihood for a éampié of size N is written Qé
L=T7Jp(x[6,8) ¢(6 - yja) d6 ,
i - - o 35

where ¢ represents the standard normal density function.

Approximation over a finite grid of points is accomplished by

p(x; [04:8) Wog(a)

5 I

Lt =1
ig

where
Wyi(@) = expl-(o_ - yia)?/21/ s expl-(0; - yjo) /2] .

approximation. The difference is that they are no longér estimated

27
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without restriction, but modeied as functions of the effect
parameters a.
MML estimation can again proceed in EM cycles that solve the

likelihood equations. Let B° and a. be provisional estimates from

cycle t. The E-step computes expected counts of examinees and

corréct responsés at each point:

N o5 peoIx, ,8%,a5)
q 1 Q.1 .
1
and
s 4l o 1. At AE
R T
where

T S T T T T RET TE
P(Oq lxiyg ’? ) = P(fi qu9E )wqi(? )/ i P(filer,g )wri‘? b

It also computes the conditional expected value of each examinee's

profictency:

SEFL _ o o oom [ aE Sty
o5 = opeglx 85

q
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The M-step pseudo-likelihood equations for item parameters can
bé written as in Equétion 9. Tﬁe éduations for & simpiify to
~t+1

= ')~ lyrg ,

~ -

“£+1
Q

where 6°*1 = (81*1,...,65"!). The posterior information matrix for

B can ayain be approximated via Equation 10.

A Numerical Example
This section illustrates the procedures described abova. The

data are responses to four items from the Arithmetic Reasoning teat
of the Armed Services Vocational Aptitude Battery (ASVAB), Form 8A,

as observed in a sample of 776 participants in the Profile of American

Youth survey (U.S. Department of Defense, 1982). Table 4 gives
counts of the sixteen possible response patterns occurring in each
cell of a 2-8?-2 design based on two background variables collected

Insert Table 4 about here
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Four analyses were carried out on these data. In each; the

2-parameter iogisiic ogive was employed as the IRT model for
conditional btbﬁébiiitiéé of correct response. The analyses
differed in terms of the auxiliary information about examinees they
empioye&; The first run used MML estimation of item ﬁéféééféfé and
densities over a gri& of ten points, assuming examinees were drawn
at random from a singié undifferentiated bbﬁuiacioh. The second
and third runs differentiated the popuiafibn via Factor A and
Factor B respectively, and the fourth run employed both factors
jointly.

Resulting item parameter estimates and standard errors, along
with §uSpo§uiétion means and standard &éviaiiong, are shown in
Tables 5 through 8. The scale has been set in all solitions to

standardize the total population. For each item 5ééiﬁéééé é§ﬁé,
columns in Table 6 tﬁrouéﬁ 8 &igbiéy the ratic of the squared
standard error of the item parameter estimate under the
undifferentiated model to the corresponding value in the
differentiated model. The result can be intérbrété& as éfficiéﬁcy
relative to the undifferentiated model, and the excess of a value
above unity reflects the piopbéiiéhéi increase in escimation
bréciéidﬁ; Ceometric averages are also shown for the relative

30
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four, gives the increases of precision in the units of numbers of

additional items of the same kind.

differences between the estimates from the undifferentiated and the
fully differentiated solutions occur only in the second decimal

place. More significant differences exist in the accompanying

(estimated) standard errors, however. The precision of threshold

estimates was improved only modestly; an increase roughly
equivalent to one additional item response per examinee was
observed in the fully differentiated run: The precision of slope
estimates was improved dramatically; an increase roughly equivalent
to eight items was observed. It would appear that Factor A
accauﬁiéd for more iﬁcrease in preciéibﬁ for éiéiéé, while Factor B
accounted for more increase in bréciéibn for thresholds.

Piscussion
This paper has outlined proceauiéé for incorporating
Enhancing the precision of item parameter estimates was the primary
focus. This section evaluates the value of improvements so

attaihed, and discusses two additional aspects of the model.
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Tﬁé iﬁctéasé iﬁ iﬁfarﬁatioﬁ about item parameters in Eypicai
educational and psychological settings can be expected to lie in
the range of two to six items: The numerical Eiiiéié suggests that

the increase will vary by item parameter type, probably less for

well-estimated éééaﬁéﬁeés and greater for podti?iéétimaté&

p'arameters .
The expected increase is modest, to be sure, but in many
applications it is free in the sense that it 1§ already available

educational assessment and adaptive testing: In assessment, data
that are sparse at the level of individials—-say, five items in a

given scale--yield more efficient estimates of population

parameters for a given total number of item resvonses. In

aéébtivé testing, new items are calibrated using jbini response
patterns with previousiy-calibrated items while the number of old
items is held to minimally acceptablz levels--as few as, say,
fifteen.

A side issue in the present paper but a fundamentally
important result is that when examinees are indesd a random sample

from a Weii-définéd popuiation, the estimated pOPuiation
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distributions and effect parameters are consistent within the limits

of precision afforded by the numerical approximations (see Mislevy,

known). This stands in contrast to the asymptotically biase

results obtained by using the distribution of @ to approximate the

distribution of 8. In fact, the discrepancy between the two

distributions i8 largest in exactly those cases in which the present

namely short tests.

Finally, it is implicit in preceding discussions that auxiliary

individual pibficieﬁcies; Whether estimates that are imérOVéd in
the sense of minimum mean squared error are uﬁéquivaéaiié "better”
for all applications is not clear; however. We have avoided

édvocaiihg the use of auxiliary information when tests are used as

conteste--i.e., when importarnt placement or selection decisions are

made for individual examinees—because it would seem that in these
situations the tester ought to gather enough data directly dependent

upon proficiency (i.e.; item reponses) to make satisfactorily

precise decisions on that strength alone: In adaptive testing, for

example, we would recommend the use of auxiliary information to

improve item parameter estimation,; but not to estimate scores that

will be used to compare individual examinees.

33
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Table 1

Posterior Precision for 8 from Item Responsés Only

~

=N
|
\

4 .250 4,000 1.000 1000 24250 ANA
8 .500  2.000 2,000 -500 42500 .222
16 1.000 1.000 4.000 .250 9.060 111
32 2.000 +500 8000 .125 18:000 :056
64 4,000 .250  16.000 .063 36000 .028
128 8.000 125 32.000 .031 72.000 .0l4

n = number of identical items with a as noted and b = 8.

i = information = posterior precision.
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Table 2
Posterior Precision for & from Item Responses and Popuiacion Membership

i:7a = 1.000

Reiativé _ _____”_-____-
ARG S Effective
~ Efficiency ﬂ(;qx/ ) _ cain

2 1.500 3.000 200.0%
4 2.000 2.000 100:0%

8 3.000 1:500 50.0%
16 5.000 - 1.250 25.0%
32 9.000 1:125 12.5%
64 17.000 1:063 6:3%

128 33.000 1.031 3.1%

n = number of identical items with a a# noted and b = 8.

1 = information & posterior precision.
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Table 3

Precision Increases for @ Resulting from the Use of
Auxiliary Information

Increment Precision Gain over- -
in Posterior Gain in _ Undifferentiated

_ Source _ Precison __ Item Units  Population

re-item response 250 1.000 -
Population membership 1.000 4.000 ==
Auxiitary information

r? = .10 1:111 i bbb 11.1%

R? = .20 1.250 5.000 25.0%

i;&ég 5;7ié 42;9%

#
Y

[V T
o

RZ = .40 1.667 6.668 66.7%
R? = .50 2.000 8.000 100.0%

2.500 10000 150.0%

e
i
L]
[« Y
D

R? = .70 3.333 13:332 233.3%

5.000 20,000 400.0%

x
1 1
s

C oo
Ql

=

#t
0
[}

10000 40 ;000 900 .0%

40




Exploiting Auxiliary Information
38

Counts of Observed Response Patterns

_ Item
_Response- . L o o
1 2 3 4% AlBl AlB2 A2B1 A2B2

23 20 27 29

QO
QO
W
W
oo

- O

14 1
2
20 i
5

—
DN
W .

14

CON

OO = OO
Fey
N

. O O
D e O

= NEN « N o NN « N

W H

I KA « , WO O W]
—
~J

14
10
11

22 2

U b
i

e O O
- O o O]

[ = NI « T

S ON
OO 00D

—

Qo

19
21
11

O e
Y N -}
™o

‘,._H
. QO

19

e e OO O O e e
—
L
0|

Pt Pt Pt L P o e o Pt |
- O O e Ol

O

86 42 2

Total 263 228 140 145
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Table 5

Item Parameter Estimates: Undifferentiated Population

Item b SE(B) a SE(a)

1 —422 .058 1.022 171
2 ~.226 .072 .666 .094

3 .152 .076 .705 .096

4 .397 .080 .839 114
Population Mean: 0.000
Population Standard Deviation:  1.000




Exploiting Auxiliary Information
40
Item Parameter Estimates: Population Differentiated

with Respect to Factor A Only

A _Relative R .. Relative

Item b _SE(b) Efficfency . a _ SE(a) Efficiency

1 -:436 .062 .875 .869 .069 60142

3 .189 .072 1.114 676 .056 2.939

4 465 .069 1.344 775 .061 3,493

Geometric average o s
relative elficiency: 1.035 3.718
Subpopulation means: .296, =.511
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Table 7
Itei: Parameter Estimates: ?abuiéiion Differentiated

with Respect to Factor B Only

R . Relative : .. _Relative

ftem b SE(b) Efficlemcy & _ SE(a) Efficiency

i ~.408 .057 _.035 .941 .073 5.487

4 431 .064 1.563 .842 .067 2.895

Geometric average . o S
relative efficiency: 1.128 3.328

éubﬁabuiétidﬁ means : 136, =.147

Subpopulation standard deviations: 1.021; .955

%= N
Yoy
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Table 8
Item Parameter Estimates: Population Differentiated

with Respect to Factors A and B

% _Relative : . Relative

Ttem b SE(b) Efffciency = a  SE(a) Efficiency

1 —:421 092 1.244 1,006 .080 41569
2 =.213 071 1:028 .672 .059 2:538
3 .139 .065 1.367 775 063 2.311

4 2402 . 066 1.469 .834 .066 2.983

Ceometric average __ B
relative efficiency: 1.266 2.994

Subpopulation means: .485; .073; -:513; -:502

Subpopulation standard deviations: 1.164, 855, .642, .640

(A
2~y
ot
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